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Tunneling and Transport Problems for a Quantum 
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The Kanai model of a quantum mechanical Brownian particle is used to 
examine the effect of interactions between particles and their environment. 
Random forces cause the thermalization of the particle. Reflection of a 
particle from a step barrier is analyzed. The problem of tunneling of the 
Brownian Particle through a rectangular barrier is solved. Finally, a 
solution for a Brownian particle in a box is presented. 

KEY W O R D S :  Quantum mechanical fr ict ion; tunnel ing; Brownian 
motion ; transport ; energy dissipation. 

1. INTRODUCTION 

In 1949 Kanai(l~ introduced a quantum mechanical Hamiltonian intended for 
disspative systems. Since then a number of  papers have examined his theory 
in some detail and other dissipative Hamiltonians have been invented (see 
Hasse (2~ for a review of this work). 

The advantage of constructing such Hamiltonians is that they allow the 
writing of a wave equation for a particle interacting frictionally with its 
environment. As with the classical Brownian particle, the interaction is 
modeled by a single parameter ~, the friction constant, which is a manifesta- 
tion of the randomly fluctuating forces representing the environmental 
particles. The alternative to this approach is to develop a many-body Hamil- 
tonian and to extract information from the conventional Schr6dinger equation 
via perturbation analysis. Our present objective is more limited, in that we 
focus our attention on one particle in a bath of  background particles. The 
particle is quantum mechanical with no internal degrees of freedom; the 
bath is classical. The particle responds to environmental random forces 
based on Boltzmann statistics. In this paper we show how the Kanai  theory 
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for the motion of a single particle in a dissipative background provides insight 
into tunneling and transport phenomena. The examples are simple enough to 
be solved analytically in closed form, but extensions to more complicated 
situations are possible. 

2. W A V E  M E C H A N I C S  OF A B R O W N I A N  PARTICLE 

The Kanai quantum mechanical Hamiltonian operator can be written (a) 

ICI = ( -hS/2rn)e-~t(~2/Ox 2) + [V~(x) + V•(x, t)]e '~ (1) 

in terms of y = ~/rn, the ratio of the dynamical friction constant to the mass 
of the particle; V~(x), an external potential; and V~(x, t),  the potential of 
the randomly fluctuating force characteristic of Brownian motion. The 
external and random forces are given, respectively, by 

F~(x )  = - ~ V~(x)  / ax  (2) 
and 

FR(t) = -- aV•(x, t ) /ax  (3) 

The one-dimensional wave equation becomes 

ih e~/e t  = ( - h 2 / 2 m ) e  -~t 825b/ax z + e~eV(x, t)r t) (4) 

where 

V(x,  t)  = VE(x) + VR(x, t)  (5) 

In the limit 7' ---> 0, Eq. (4) reduces to the conventional Schr6dinger equation. 
It is of interest to investigate how the rate of loss of energy of the system 

to the surroundings is related to the friction coefficient y. For this purpose, 
consider the Langevin equation of motion for Heisenberg operators (2) 

dfi/dt = - y f i  + F~(~) + FR(t) (6) 

As in the classical Brownian motion problem, the generalized momentum 
operator is different by a factor of e ye from the Heisenberg momentum 
operator ft. 

The solution to Eq. (6) for a free Brownian particle (V~ = 0) is used to 
obtain the expectation value and ensemble average of the kinetic energy, 
which for FR(s) = 0 becomes 

( I~)  = ( f i2(O)/Zm)e-  27~ + �89 - e - 2~t) (7) 

where we have considered the bath to be classical so that the correlation 
function can have the form 

FR(s)FR(s')  = 2 m y k T  3(s - s') (8) 
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Since the ensemble average of the fluctuating potential V~(x, t )  is zero, the 
total energy of the system is equal to the kinetic energy </?} = (/~). Then, 
differentiating Eq. (7) with respect to time gives us a differential equation 
whose solution is 

(~> = ((/~(0-----)> - k T / 2 ) e  -2y~ + k T / 2  (9) 

Thus the relaxation of the energy of an ensemble of free Brownian particles 
proceeds to a value k T / 2  with a time constant of 1/2~ for large times. There- 
fore the Kanai model of quantum mechanical friction not only shows that 
the particle loses energy, <3~ but shows also how the particle is thermalized. 

Haase (2) has presented an extended discussion of solutions to the 
SchrSdinger equation (4) when the random field is absent, i.e., when VR(x, t )  
= 0. Because of  the inseparable relation between the random potential and 
the friction coefficient in Brownian motion, we will present the solution to 
Eq. (4) when 

where 

V(x, t )  = - x F ( t )  (10) 

F ( t )  = Fz ( t )  + FR(t)  (11) 

For the translating and damped particle we assume a form for the wave 
function 

d/(x, t) --- exp{ i [x~( t )  - r (12) 

where a(t)  and r are functions of t only. Substituting Eq. (12) into Eq. (4) 
gives 

x[h da/dt  - e~tF(t)] = h dr  - (h~a2/2m)e - ~  (13) 

Since the left-hand side of Eq. (13) is a product of the variable x and a function 
of t, while the right-hand side is a function of t only, Eq. (13) will be satisfied 
only if 

h da( t ) /d t  : ertF(t)  (14) 

and 

dr  = (h/2m)e-Vta~(t)  (15) 

Integrating Eqs. (14) and (15) yields expressions for a and r to be used in 
Eq. (12), 

a(t )  = ao + ( l / h ) (  t e ~ r ( s ) d s  (16) 
Jo 
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and 

~( t )  = (~o + (h/2m) e-YS~2(s) ds (17) 

with So = c~(t = 0) and q~o = q~(t = 0). The solution has the property of 
correspondence, (2~ and also reduces as ~,-+ 0 to the wave function for a 
freely translating particle in a conservative system with q~(t) = ~ot. The wave 
function, Eqs. (12), (16), and (17), for the translating Brownian particle is 
the starting point for the analyses to follow. 

As an example of how the quantum theory of Brownian motion can be 
used to obtain a realistic physical result, Buch and Denman, (4~ by neglecting 
FR(t), have derived the expression for conduction flux of charged particles 
in an electric field. For the random part of the flux it is not difficult to show 
that 

(jR2> = pu<v2>(1 - e -2't) (18) 

in terms of the particle density p and thermal velocity of the charged particles(5~ 

(v2> = k T / m  (19) 

After the transient has passed we have the rms value of the current per unit 
charge due to the random forces, 

j ~  = p ( k T / m )  ~12 (20) 

3. REFLECTION F R O M  A BARRIER 

Consider the step potential 

V ( x ) = ( o ~  forf~176 < xo (21) 

We assume that the Schr6dinger-Langevin equation (4) has a solution of the 
form 

~b I = e "~x-~) + A e  -~(~'~+~'') for x < Xo (22) 

~bii = Be  ~(~'~-~') for x > Xo (23) 

where ~ and q~(t) are given by Eqs. (16) and (17). To determine expressions 
for the reflected wave parameters ~' and q~', we follow the steps used to get 

and q~, i.e., Eqs. (12)-(17), but with the wave function of Eq. (12) replaced 
with the term multiplied by A in Eq. (22). One obtains 

a' = ~o - h -Z  f ~  e~SFR(s) ds (24) 
Jo 



Tunneling and Transport Problems 305 

and 

4 '  = 40 + ( h / 2 m )  e-rS[a'(s)] 2 ds  (25) 

O f  course 4 '  4: 4, since a '  # a. Fo r  the t ransmit ted wave we require that  
energy be conserved;  therefore,  

h 2 ~ 2 / 2 m  = h 2 ( a " ) 2 / 2 m  + Vo (26) 

so tha t  

a" = (a 2 - 2 m V o / h 2 )  lt2 (27) 

Since for  x > xo we have VE = Vo, it follows that  

Ji 4" = 40 + (h/2m) e- '~[ ,~"(s)]  ~ ,is + V0(e ' ~ -  1)h,/~ (28) 

To  determine the constants  A and B we use the condit ion that  4, and its 
x derivative bo th  be cont inuous at  Xo = 0; thus 

e - ~  + A e  -~*" = B e  - ~ "  (29) 

and  

c~e -~e' - ~ ' A e  -i*" = a " B e  -i4'" (30) 

Solving for  A and B yields 

and  

F r o m  Eq. (23) we have 

tl 

A = ~ e "~'-~) (31) 

B = - -  e "'~ - ~) (32) 
O~ t .q-  OJ  t 

a '  + a ,  e_~(~_~,,x) (33) 

so tha t  4" is not  explicitly required. 
The reflectivity is obta ined f rom Eq. (31), 

[AI 2 = A A *  = ~ (34) 

when ~2 > 2rnVo/h2 ,  so that  ~", defined in Eq. (27), is real. When  a2 ~< 
2 m V o / h  2, o:" is imaginary  and [A] 2 equals unity, since the energy of  the 
incoming wave has energy less than  the barr ier  height. (6) 
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Because Eq. (34) contains contributions from the random force, we need 
an ensemble average of the reflectivity to assess the effect of frictional damp- 
ing. From Eqs. (16) and (24) we write 

where 

~' = ~o - a /h  (35)  

a = ao + ~/h (36) 

= e~SF~(s) ds (37) 

A lemma of Chandrasekar a> provides the probability distribution of ~, 

W(h) = [4=q~ 4,2(s)ds]l'~ expI(-hd4q)f~ 4,2(s)ds] (38) 

where 

and 

= e rs (39) 

q = 7 k T / m  (40) 

Therefore, the ensemble average of Eq. (34) may be calculated from 

IAI = = 1 / 1 2 r v ( a )  dA (41)  

A more restricted result may be obtained for 7t  << 1, so that A is assumed 
to be a very small quantity in the sense that 12 is small. We use the power 
series expansion and keep terms up to Z 2 to show that Eq. (27) can be written 

a" z fi[1 - ZO:o/hfi 2 + a2(�89 - ao2/f12)] (42) 

with 

f12 = ao 2 _ 2 m  Vo/h 2 (43) 

not equal to zero in this expansion. Next we substitute Eq. (42) into (34), 
expand the reciprocal of the denominator, and keep terms up to )t 2. We take 
the ensemble average of the resulting expression and, recognizing that 
X = 0 since FR = 0, we obtain 

~o + ~I L ~ (~o + ~,f) IAI 2 (44) 

where 

fo'  ~-ff = ds ds '  e ~ +~'>FR(s)FR(s') (45) 
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is given in terms of the correlation function of the random force. According 
to Eq. (44), the effect of frictional damping is to increase the reflectivity above 
its value (% - p)2/(~ o + fl)2 in the absence of friction. 

Since the correlation function in (45) is equivalent to the one in Eq. (7), 
we can write 

A 2 = m k T ( e  2~t - 1) ~ 2 7 t m k T  (46) 

since 7 t  must be small to ensure that 7 is small. Thus reflectivity increases and 
tunneling decreases as T, m, or 7t  increases. 

4. T U N N E L I N G  T H R O U G H  A R E C T A N G U L A R  BARRIER 

Consider the rectangular potential 

fO 
' x < O  

V ( x ) =  Vo > 0 ,  x < x < l (47) 

, x > l  

We assume that the wave function has the following forms in the three regions: 

x < 0; ~bi = e ~(~x- ~') + A e - " % x  +*~) (48) 

0 < x < h ~bii = Be~(~2x-~P + Ce-~(%~+~a ) (49) 

x > l: ~bm = De~(%~-~4 ) (50) 

in terms of 

= O~o + h/h 

~2 = (~2 - 2mVo/h~) ~ 

~ 3  = ( ~ 1 2  - 2mVo/h~)  ~ 

~ = ( ~  + 2mVo/h~)  lr~ = ~, 

(51) 

(52) 

(53) 

(54) 

(55) 

where Eqs. (53)-(55) are results of conservation of energy as in Eq. (27). If  
7' = 0 and FR(t)  = 0, then a = al = cq and a2 = a3 as for the undamped 
wave. (6) The quantity ~ is given by Eq. (17), and because c~ = ~4 in Eq. (55), 
it follows that q~ = q~. Although equations for ~1, q~2, and q~4 are readily 
derived using the same procedure as for Eqs. (17) and (25), these quantities 
cancel from our final expressions and therefore do not appear explicitly. 
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Applying conditions that  ~b and its x derivative are cont inuous at x = 0 
and x = l yields 

e -~* + A e - * * ~  = Be -~*2  + Ce-~*~ (56) 

a e  -~* - a ~ A e - ~ * l  = a 2 B e - * %  - a s C e - * * ~  (57) 

B e " % ~ - %  ~ + Ce-~(%~+r > =  D e " % ~ - * P  (58) 

a s B e ~ ( %  ~ - r  - % C e -  ~ ( ~  + #'r = a ~ D e ~ ( %  ~ - ~ >  ( 5 9 )  

We will solve these equations to obtain [D[ z, the transmission coefficient o f  
the barrier. 

I f  Eq. (58) is divided by (59), we obtain an equation for B in terms of  C. 
Substituting this equation into Eqs. (56) and (57) and dividing gives an equa- 
t ion for A, 

cd-'~ + P~ e_ , ( , _ ,p  (60) 
A = c~i~ + i.~s 

where 

Pl - a3 + a~ e_itz(%+~2~+~31 + e_i~3 (61) 
C~2 -- ~ 4  

a3 + a4 e-*~'(% + ~ + ~ + ~* - ~,~ " (62) 172 = a s - -  _ a 3 e - = ~ s  
~2 -- a 4  

We also find 

C 2a~e-*~ 
alP~ + I'2 (63) 

B ~3 + ~4 2al e_,tz(~+~3~+~,_~+~1 (64) 

D as + a3 2al e_,tz(~+~r _ ~  ~ (65) 
a2 - a4 alP1 + F2 

In  the limit where ~, = 0 and Fn = 0, it is not  difficult to show that  the 
equations for A and D are equivalent to ones given by Schiff. (6~ 

For  a s, al s < 2m Vo/h  2 we can show after some algebraic manipulat ion 
that  the transmission coefficient for the barrier for  small h is 

IDI s = 1 + 4 , ( 1  - , ) J  I + 1 (1 e) s 1 - �9 
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where 

O = 
sinh2~ ]- lfe(2~_~ 1) - 1) z ~, 

cos +  x sinh~7 cosh~ + ~ 1---E 1 ~  

In these equations we have used Eq. (46) and defined 

with 

and 

= [2v(1 - ~)]~_/2 (68) 

v = m V o l 2 / h  2 (69) 

= ao2h2 /2mVo (70) 

7' = 2 m r t k T / ~ o  2h2 (71) 

As y --~ 0 we recover the transmission coefficient for the undamped wave. Of 
course it is also possible to write an ensemble average of the transmission 
coefficient with the probability distribution of A given by Eq. (38); that is, 

f? [Ol s = IDI~rV(A) d~ (72) 
c o  

5. D A M P E D  PARTICLE IN A BOX 

Consider the square well potential with impenetrable walls, 

= f O ,  0 < x < l V(x) (73) 
~ ,  x <  0 a n d x >  l 

We assume a form for the wave function 

~b(x, t )  = A e  t ("x-~)  + B e  -~c"'x+*'~ (74) 

for waves traveling in different directions. The parameters can be written as 

= s o + A/h (75) 

~' = ~o' - A/h (76) 

h/o' ~b = ~o + T m  e-'[c~'(s)l 2 ds  (77) 

h f o  ~ 
4,' = 40' + ~ e- ' [~ ' (s)]  2 ds  (78) 
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We require that the wave function vanish where the potential is infinite; thus 

0 = ~b(x = O) = A e  - ~  + B e  -~"  (79) 

and 

0 = ~b(x = l )  = A e  ~(~z-~) + B e  -~(~'~+~') (80) 

From Eq. (79) we find 

A / B  = - e-~(~'- ~) (81) 

Substituting Eq. (81) into (80) and simplifying yields 

-exp( i%l)  + e x p ( - i % ' l )  = 0 (82) 

But for our problem to reduce to the conventional undamped wave case, we 
must have 

Thus Eq. (82) specifies 

ao = ~o' (83) 

sin(aft) = 0 (84) 

which requires that 

ao = n ~ / l  for n = O, • 1, +_ 2,... (85) 

These are the same eigenvalues as for the undamped case. 
The wave function can be written as 

4~ = - 2 B i  e x p [ i ( A x / h  - ~ ' )  sin aoX] 

which has the same normalization as the undamped case: 

jo 1 = ~'4, dx 

from which 

(86) 

(87) 

( P )  = a = e ' G ( s )  ds (90) 

With (88) one finds 

[BI~= 1/(20 (88) 

We next examine momentum and energy of the particle described by the 
wave function (86). 

The expectation value of the generalized momentum is 

( l P )  = - i h ~  4J* ~ x  dX (89) 
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This result is exactly what one obtains for the average momentum of the two 
reflected waves; i.e., 

�89 - h~'] = A (91) 

The observable momentum is given by ~2~ 

(fi> = ( P > e -  ~ = ;~e- ~ (92) 

so that friction eventually causes the momentum of the particle to vanish. 
The expectation value of the Hamiltonian is 

J2 ( H )  = ~b*/~r~b dx (93) 

where H is given by Eq. (1) with Ve = 0. Performing the indicated operations 
yields 

( f r )  = (1/2m)(2,2 + hY~oY)e-~,+ e~,(VR(x, t ) )  (94) 

Using the relation between the total energy of the system and the Hamiltonian 
yields 

( E )  = (t71)e -~  = (1/2m)(A z + haaoY)e -2~ + (VR(x, t ))  (95) 

We perform an ensemble average on Eq. (95) and use FR(t) = 0, along with 
the expression for A 2, which appears in Eq. (46), to obtain 

(J~) = (hY/2m)aoYe -2rt + �89 - e -2~) (96) 

which is essentially equivalent to Eq. (9). As t -+ o% the system is thermalized 
to energy kT/2. 

In summary, we have applied the Kanai theory of quantum mechanical 
friction to several fundamental problems of a particle interacting with its 
environment. The random forces due to the environment give rise to the 
dissipative force proportional to particle velocity in the manner of  the usual 
Langevin drag, and cause the eventual thermalization of  the particle. This 
damping effect influences the behavior of  a particle reflecting from a step 
barrier or tunneling through a rectangular barrier and of the particle in a box. 
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